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Abstrat

We investigate multi-server queueing systems with Poisson arrivals, non-idential

servers and ustomers of random volume, under assumption that ustomer's servie

time having an exponential distribution doesn't depend on his volume, but servie

time parameters an be di�erent for di�erent servers. We also assume that the total

volume of ustomers present in the system at arbitrary time instant is bounded by

some onstant value V > 0.
For suh systems the stationary ustomers number distribution and loss proba-

bility are determined.

1. Analysis of M/M/n/(m, V ) queueing system with

idential servers

Consider the system M/M/n/(m,V ) with idential servers [6℄.

Denote by η(t) the number of ustomers present in the system at time

instant t. Let σ1(t), σ2(t), . . . , ση(t)(t) be the volumes of ustomers numbered

by 1, 2, . . . , η(t) aording to their oming to the system; a be the parameter

of Poisson arrival �ow and µ be the parameter of servie time distribution.

Let L(x) = P{ζ < x} be the distribution funtion of ustomers volume ζ that

is a non-negative random variable.

Then we an desribe the system under onsideration by the following

markovian proess:

(

η(t), σ1(t), σ2(t), . . . , ση(t)(t)
)

. (1)
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Proess (1) an be haraterized by the following funtions:

Pk(t) = P{η(t) = k}, k = 0, n +m, (2)

Gk(t, x) = P{η(t) = k, σ(t) < x}, k = 1, n+m, (3)

where σ(t) =
∑η(t)

i=1 σi(t) is the total volume of ustomers present in the system

at time instant t.

It is lear that for k = 1, n+m we have the relation

Pk(t) = Gk(t, V ). (4)

For the funtions (2), (3) we an write down the following equations:

P ′
0(t) = −aP0(t)L(V ) + µP1(t); (5)

P ′
1(t) = aP0(t)L(V )− a

∫ V

0
G1(t, V − y)dL(y)− µP1(t) + 2µP2(t); (6)

P ′
k(t) = a

∫ V

0
Gk−1(t, V − y)dL(y)− a

∫ V

0
Gk(t, V − y)dL(y)−

−kµPk(t) + (k + 1)µPk+1(t), k = 2, n− 1; (7)

P ′
k(t) = a

∫ V

0
Gk−1(t, V − y)dL(y)− a

∫ V

0
Gk(t, V − y)dL(y)−

−nµPk(t) + nµPk+1(t), k = n, n+m− 1; (8)

P ′
n+m(t) = a

∫ V

0
Gn+m−1(t, V − y)dL(y)− nµPn+m(t). (9)

In stationary mode that exists if ρ = a/(nµ) < ∞, we an introdue the

following stationary analogies of the funtions (2), (3):

pk = P{η = k}, k = 0, n +m, (10)

gk(x) = P{η = k, σ < x}, k = 1, n+m, (11)

where η(t) ⇒ η and σ(t) ⇒ σ in the sense of a weak onvergenes.

Then the steady state equations for the funtions (10), (11) follow from the

equations (5)�(9) and take the form

0 = −ap0L(V ) + µp1; (12)
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0 = ap0L(V )− a

∫ V

0
g1(V − y)dL(y)− µp1 + 2µp2; (13)

0 = a

∫ V

0
gk−1(V − y)dL(y)− a

∫ V

0
gk(V − y)dL(y)−

−kµpk + (k + 1)µpk+1, k = 2, n − 1; (14)

0 = a

∫ V

0
gk−1(V − y)dL(y)− a

∫ V

0
gk(V − y)dL(y)−

−nµpk + nµpk+1, k = n, n+m− 1; (15)

0 = a

∫ V

0
gn+m−1(V − y)dL(y)− nµpn+m. (16)

Let us introdue the notation Lk(y) for kth order Stieltjes onvolution of

the distribution funtion L(y), whih is de�ned reurrently as follows:

L0(y) ≡ 1, Lk(y) =

∫ y

0
Lk−1(y − u)dL(u).

In addition, we introdue the notation

N(k) =

{

(nρ)k

k! , if k = 1, n;
nnρk

n! , if k = n+ 1, n +m.

By diret substitution, we an hek that the solution of (12)�(16) has the

form

gk(x) = p0N(k)Lk(x), k = 1, n +m.

By the limiting transition in (4), we an obtain formulas for pk:

pk = gk(V ) = p0N(k)Lk(V ), k = 1, n +m. (17)

From the normalization ondition

∑n+m
k=0 pk = 1 we also obtain

p0 =

[

1 +

n+m
∑

k=1

N(k)Lk(V )

]−1

. (18)

The loss probability an be obtained from the following equilibrium ondi-

tion:

a(1− pu) = µ
n−1
∑

k=1

kpk + nµ(1−
n−1
∑

k=0

pk),
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whereas we have

pu = 1− (nρ)−1
n−1
∑

k=1

kpk − ρ−1(1−
n−1
∑

k=0

pk), (19)

where probabilities pk are determined by (17). The results for analyzed sys-

tem were presented, for example, in [6℄.

2. M/M/n/(m, V ) queueing system with non-idential

servers and the random hoie of a server

In this setion we present some generalization of the system disussed in

setion 1. The purpose of our investigations is to obtain formulas for probabil-

ities pk and loss probabilities in the steady state and to analyze some speial

ases. We use some lassial results for M/M/n/m queuing systems with

non�idential servers [1�5, 8℄ and some basi properties of queueing systems

with non-homogeneous ustomers and ustomer's servie time independent on

its volume [6, 7℄.

If the parameters of servie time distribution are not idential for every

server, then the behaviour of the system is desribed by the following marko-

vian proess:

(

η(t), i1(t), i2(t), . . . , il(t), σ1(t), σ2(t), . . . , ση(t)(t)
)

, (20)

where l = min(η(t), n) and i1(t), i2(t), . . . , il(t) is the sequene of the numbers
of busy servers ordered inreasingly. If η(t) = 0, the proess (20) redues to

η(t).

Proess (20) is haraterized by the following funtions:

P0(t) = P{η(t) = 0}; (21)

Gkf1f2...fl(t, x) = P{η(t) = k, i1(t) = f1, i2(t) = f2, . . . , il(t) = fl, σ(t) < x},

k = 1, n +m. (22)

It is obvious that for k ≥ n funtion (22) an be rewritten as

Gk(t, x) = P{η(t) = k, σ(t) < x}.

If k < n, we have

Gk(t, x) = P{η(t) = k, σ(t) < x} =
∑

{Fn

k
}

Gkf1f2...fk(t, x), (23)
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where {Fn
k } is the set of all k-element ombinations of the set {f1, f2, . . . , fn}.

Assume additionally that we have only two non-idential servers. Denote

as µ1, µ2 time servie parameters for �rst and the seond server onsequently.

Let us introdue the notation ρ = a
µ1+µ2

.

In this ase the proess (20) take the form

(

η(t), i1(t), . . . , il(t), σ1(t), σ2(t), . . . , ση(t)(t)
)

, (24)

where l = min(η(t), 2).

Proess (24) an be haraterized by the following funtions:

P0(t) = P{η(t) = 0}; (25)

P11(t) = P{η(t) = 1, i1(t) = 1}; (26)

P12(t) = P{η(t) = 1, i1(t) = 2}; (27)

Pk(t) = P{η(t) = k}, k = 2,m+ 2; (28)

G11(t, x) = P{η(t) = 1, i1(t) = 1, σ(t) < x}; (29)

G12(t, x) = P{η(t) = 1, i1(t) = 2, σ(t) < x}; (30)

Gk(t, x) = P{η(t) = k, σ(t) < x}, k = 2,m+ 2. (31)

If we analyze the behaviour of the system, we an write down the following

equations:

P ′
0(t) = −aP0(t)L(V ) + µ1P11(t) + µ2P12(t); (32)

P ′
11(t) = −a

∫ V

0
G11(t, V −x)dL(x)−µ1P11(t)+

a

2
P0(t)L(V )+µ2P2(t); (33)

P ′
12(t) = −a

∫ V

0
G12(t, V −x)dL(x)−µ2P12(t)+

a

2
P0(t)L(V )+µ1P2(t); (34)

P ′
2(t) = −a

∫ V

0
G2(t, V − x)dL(x)− (µ1 + µ2)P2(t)+

+a

(
∫ V

0
G11(t, V − x)dL(x) +

∫ V

0
G12(t, V − x)dL(x)

)

+ (µ1 + µ2)P3(t);

(35)

P ′
k(t) = −a

∫ V

0
Gk(t, V − x)dL(x) − (µ1 + µ2)Pk(t)+

+a

∫ V

0
Gk−1(t, V − x)dL(x) + (µ1 + µ2)Pk+1(t), k = 3,m+ 1; (36)
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P ′
m+2(t) = −(µ1 + µ2)Pm+2(t) + a

∫ V

0
Gm+1(t, V − x)dL(x); (37)

P0(t) + P11(t) + P12(t) +

m+2
∑

k=2

Pk(t) = 1. (38)

In the steady state (if only ρ < ∞), we obtain the following equations for

funtions p0, p11, p12, pk, g11(x), g12(x), gk(x), that are the limits of funtions

(25)�(31) (if t → ∞) in the sens of weak onvergene:

0 = −ap0L(V ) + µ1p11 + µ2p12; (39)

0 = −a

∫ V

0
g11(V − x)dL(x)− µ1p11 +

a

2
p0L(V ) + µ2p2; (40)

0 = −a

∫ V

0
g12(V − x)dL(x)− µ2p12 +

a

2
p0L(V ) + µ1p2; (41)

0 = −a

∫ V

0
g2(V − x)dL(x)− (µ1 + µ2)p2+

+a

(
∫ V

0
g11(V − x)dL(x) +

∫ V

0
g12(V − x)dL(x)

)

+ (µ1 + µ2)p3; (42)

0 = −a

∫ V

0
gk(V − x)dL(x)− (µ1 + µ2)pk+

+a

∫ V

0
gk−1(V − x)dL(x) + (µ1 + µ2)pk+1, k = 3,m+ 1; (43)

0 = −(µ1 + µ2)pm+2 + a

∫ V

0
gm+1(V − x)dL(x); (44)

p0 + p11 + p12 +

m+2
∑

k=2

pk = 1. (45)

By the diret substitution, we an hek that the solution of (39)�(45) has

the form

g11(x) =
a

2µ1
p0L(x), g12(x) =

a

2µ2
p0L(x); (46)

gk(x) =
ap0
2

(

1

µ1
+

1

µ2

)

ρk−1Lk(x), k = 2,m+ 2; (47)

p11 =
a

2µ1
p0L(V ), p12 =

a

2µ2
p0L(V ); (48)
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p1 = p11 + p12 =
ap0
2

(
1

µ1
+

1

µ2
)L(V ); (49)

pk =
ap0
2

(

1

µ1
+

1

µ2

)

ρk−1Lk(V ), k = 2,m+ 2. (50)

The formulas (49)�(50) an be rewritten as it follows:

pk =
ap0
2

(

1

µ1
+

1

µ2

)

ρk−1Lk(V ), k = 1,m+ 2, (51)

where p0 an be obtained from the normalization ondition (45) and has the

form

p0 =

[

1 +
a

2

(

1

µ1
+

1

µ2

)m+2
∑

k=1

ρk−1Lk(V )

]−1

. (52)

The above analysis an be generalized for the arbitrary number of non-

idential servers

For example, in the ase of n = 3 we obtain

p11 =
ap0
3µ1

L(V ), p12 =
ap0
3µ2

L(V ), p13 =
ap0
3µ3

L(V ); (53)

p1 = p11 + p12 + p13 =
ap0
3

(

1

µ1
+

1

µ2
+

1

µ3

)

L(V ); (54)

p212 =
a2p0
6µ1µ2

L2(V ), p213 =
a2p0
6µ1µ3

L2(V ), p223 =
a2p0
6µ2µ3

L2(V ); (55)

p2 = p212 + p213 + p223 =
a2p0
6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)

L2(V ); (56)

pk =
a2p0
6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)

ρk−2Lk(V ), k = 3,m+ 3, (57)

where ρ = a
µ1+µ2+µ3

. Formulas (56)�(57) an be rewritten as

pk =
a2p0
6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)

ρk−2Lk(V ), k = 2,m+ 3. (58)

where we obtain the following value for p0:

p0 =

[

1 +
a

3

(

1

µ1
+

1

µ2
+

1

µ3

)

L(V )+

+
a2

6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)m+3
∑

k=2

ρk−2Lk(V )

]−1

. (59)
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The solutions of analyzed systems of equations in the steady state are

obtained using omputer algebra systems (ex. Mathematia environment).

In general ase we obtain the following formulas:

pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

Lk(V ), k = 1, n − 1; (60)

pk =











ak(n−k)!p0
n!

∑

{Fn

k
}

1∏
xi∈Fn

k

µxi

Lk(V ), k = 1, n − 2,

an−1p0
n!

∑

{Fn

n−1
}

1∏
xi∈Fn

n−1

µxi

ρk−n+1Lk(V ), k = n− 1, n +m,
(61)

where Fn
k denotes k-element subset of n-element set and

p0 =



1 +
1

n!

n−2
∑

k=1

ak(n− k)!
∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

Lk(V )+

+
an−1

n!

n+m
∑

k=n−1

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

ρk−n+1Lk(V )





−1

. (62)

3. Loss probability

Assume that we have a system with two non-idential servers. Denote as

µ1, µ2 servie time parameters for the �rst and seond server onsequently.

Denote as pu the loss probability for the system under onsideration. To

obtain the value of pu we an write down the following equilibrium ondition:

a(1− pu) = µ1p11 + µ2p12 + (µ1 + µ2)

(

1−

1
∑

k=0

pk

)

. (63)

In the ase of three servers the equilibrium ondition has the form

a(1− pu) = µ1p11 + µ2p12 + µ3p13 + (µ1 + µ2)p212+

+(µ1 + µ3)p213 + (µ2 + µ3)p223 + (µ1 + µ2 + µ3)

(

1−
2
∑

k=0

pk

)

. (64)

In general we have the following formula

a(1− pu) =

n−1
∑

k=1

∑

{Fn

k
}

pkf1f2...fk

k
∑

i=1

µfi +

n
∑

k=1

µk

(

1−

n−1
∑

k=0

pk

)

. (65)
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The solution of (65) leads to the following result:

pu = 1−
1

a





n−1
∑

k=1

∑

{Fn

k
}

pkf1f2...fk

k
∑

i=1

µfi +

n
∑

k=1

µk

(

1−

n−1
∑

k=0

pk

)



 , (66)

where pkf1f2...fk and pk are determined by relations (60) and (61).

4. Analysis of some speial ases

1. M/M/n/(0, V ) queueing system with non-idential servers.

Consider now a queueing system with no waiting plaes in the queue (m =
0). In this ase formula (61) has the form

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

Lk(V ), k = 1, n − 1;

pn =
an−1p0ρ

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

Ln(V ),

where

p0 =



1 +
1

n!

n−1
∑

k=1

ak(n− k)!
∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

Lk(V )+

+
an−1ρ

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

Ln(V )





−1

.

Loss probability on the base of the relation (66) has the form

pu = 1−
1

a





n−1
∑

k=1

∑

{Fn

k
}

pkf1f2...fk

k
∑

i=1

µfi + pn

n
∑

k=1

µk



 .

Assume additionally that ustomer's volume has an exponential distribu-

tion with the parameter f i.e. L(x) = 1 − e−fx
. In this ase we have

Lk(x) = 1− e−fx
∑k−1

i=0
(fx)i

i! i.e. the funtion Lk(x) has the k−Erlang distri-

bution with the parameter f . So we �nally obtain the formulas
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pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

(

1− e−fV
k−1
∑

i=0

(fV )i

i!

)

, k = 1, n − 1;

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

(

1− e−fV

k−1
∑

i=0

(fV )i

i!

)

, k = 1, n − 1;

pn =
an−1p0ρ

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

(

1− e−fV
n−1
∑

i=0

(fV )i

i!

)

. (67)

Assume now that ustomers's volume has geometri distribution with the

parameter f i.e. L(x) =
∑

k<x(1− f)fk
. Then we have

Lk(x) =
∑

i<x

(

k + i− 1

i

)

f i(1− f)k.

So we obtain the following results:

pkf1f2...fk =
ak(n − k)!p0

n!
∏k

i=1 µfi

∑

i<V

(

k + i− 1

i

)

f i(1− f)k, k = 1, n − 1;

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

∑

i<V

(

k + i− 1

i

)

f i(1− f)k, k = 1, n − 1;

pn =
an−1p0ρ

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

∑

i<V

(

n+ i− 1

i

)

f i(1− f)n. (68)

Finally we assume that ustomer's volume is onstant i.e. ζ = f0. Then

we have L(x) = H(x−f0), where H(x) is the Heaviside unitstep funtion and

Lk(x) = H(x
k
− f0).

So we obtain the following results:

pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

H

(

V

k
− f0

)

, k = 1, n− 1;

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

H

(

V

k
− f0

)

, k = 1, n − 1;
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pn =
an−1p0ρ

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

H

(

V

n
− f0

)

. (69)

2. M/M/n/(∞, V ) queueing system with non-idential servers.

Consider now queueing system with in�nite number of waiting plaes

(m = ∞). In this ase formula (61) has the form

pk =











ak(n−k)!p0
n!

∑

{Fn

k
}

1∏
xi∈Fn

k

µxi

Lk(V ), k = 1, n − 2,

an−1p0
n!

∑

{Fn

n−1
}

1∏
xi∈Fn

n−1

µxi

ρk−n+1Lk(V ), k ≥ n− 1,

where

p0 =



1 +
1

n!

n−2
∑

k=1

ak(n− k)!
∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

Lk(V )+

+

∞
∑

k=n−1

an−1

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

ρk−n+1Lk(V )





−1

.

In addition, loss probability is determined by (66).

Assume additionally that ustomer's volume has exponential distribution

with the parameter f . Then we have the following formulas:

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

(

1− e−fV
k−1
∑

i=0

(fV )i

i!

)

, k = 1, n − 2;

pk =
an−1p0ρ

k−n+1

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

(

1− e−fV

k−1
∑

i=0

(fV )i

i!

)

, k ≥ n− 1.

(70)

Assume now that ustomers's volume has geometri distribution with the

parameter f . Then we have

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

∑

i<V

(

k + i− 1

i

)

f i(1− f)k, k = 1, n− 2;
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pk =
an−1p0ρ

k−n+1

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

∑

i<V

(

k + i− 1

i

)

f i(1−f)k, k ≥ n−1.

(71)

If the ustomer's volume is onstant (ζ = f0), then we obtain the following

results:

pk =
ak(n− k)!p0

n!

∑

{Fn

k
}

1
∏

xi∈Fn

k

µxi

H

(

V

k
− f0

)

, k = 1, n − 2;

pk =
an−1p0ρ

k−n+1

n!

∑

{Fn

n−1
}

1
∏

xi∈Fn

n−1

µxi

H

(

V

k
− f0

)

, k ≥ n− 1 (72)
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