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Abstract

We investigate multi-server queueing systems with Poisson arrivals, non-identical
servers and customers of random volume, under assumption that customer’s service
time having an exponential distribution doesn’t depend on his volume, but service
time parameters can be different for different servers. We also assume that the total
volume of customers present in the system at arbitrary time instant is bounded by
some constant value V' > 0.

For such systems the stationary customers number distribution and loss proba-
bility are determined.

1. Analysis of M/M/n/(m,V) queueing system with
identical servers

Consider the system M /M /n/(m, V) with identical servers [6].

Denote by n(t) the number of customers present in the system at time
instant t. Let 01(t),02(t),. .., 0p@)(t) be the volumes of customers numbered
by 1,2,...,n(t) according to their coming to the system; a be the parameter
of Poisson arrival flow and p be the parameter of service time distribution.
Let L(z) = P{{ < z} be the distribution function of customers volume ¢ that
is a non-negative random variable.

Then we can describe the system under consideration by the following
markovian process:

(n(t)a 01 (t)a UQ(t)7 < On(t) (t)) . (1)
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Process (1) can be characterized by the following functions:

Py(t) = P{n(t) = k},k = 0,n +m, (2)

Gi(t,x) = P{n(t) = k,o(t) <z}, k=1,n+m, (3)

where o(t) = Z?g 0;(t) is the total volume of customers present in the system
at time instant .
It is clear that for £ = 1,n + m we have the relation

Pi(t) = Gr(t, V). (4)

For the functions (2), (3) we can write down the following equations:
Py(t) = —aPy(t)L(V) + pPi(t); (5)

174
Pl(t) = aPo()L(V) —a /0 Gi(t,V — y)dL(y) — uPy(t) + 2uPa(t);  (6)

1% 1%
Pl(t) =a /0 Grr(t,V — y)dL(y) — a /0 GtV — y)dL(y) -
—kuPy(t) + (k+ 1)pPryq(t), k=2,n—1; (7)
1% 1%
Pl(t) =a /0 Grr(t,V — y)dL(y) — a /0 GtV — y)dL(y) -
—npPy(t) + npPya(t), k=n,n+m—1; (8)

14
Prim(® = [ Guana 1V =)L) = nuPocn). (9)

In stationary mode that exists if p = a/(nu) < oo, we can introduce the
following stationary analogies of the functions (2), (3):

pr=P{n=k}Lk=0,n+m, (10)

g(z) = P{n=ko <z}, k=1,n+m, (11)

where n(t) = n and o(t) = o in the sense of a weak convergences.
Then the steady state equations for the functions (10), (11) follow from the
equations (5)—(9) and take the form

0= —apoL(V) + pup1; (12)



Queueing system M /M /n/(m, V) with non-identical servers

1%
0=apoL(V)— a/ g1(V — y)dL(y) — pup1 + 2pp2; (13)
0

174 174
o:aA %qwnwmuw—aﬂ ge(V — y)dL(y)—

—kppr + (k + Dppry1, k=2,n—1; (14)

1% 1%
o:aA %qwnwmuw—aé gu(V — )dL(y)—

—nppy + npppi1, k=n,n+m—1; (15)

\%
0= a/o grtm—-1(V = y)dL(y) — npppim- (16)

Let us introduce the notation Lg(y) for kth order Stieltjes convolution of
the distribution function L(y), which is defined recurrently as follows:

Lo(y) =1, Li(y) = /Oy Li_1(y —w)dL(u).

In addition, we introduce the notation
(np)* e T
Ny = o ER=Tm
e ifk=n+1,n+m.
By direct substitution, we can check that the solution of (12)-(16) has the
form
k() = poN(k)Li(z),k = 1,n +m.

By the limiting transition in (4), we can obtain formulas for py:
pr = gk(V) =poN(k)Lp(V),k =1,n+m. (17)

From the normalization condition $_p24" pr. = 1 we also obtain

n+m -1

1+ Y N(k)Li(V) (18)
k=1

bo =

The loss probability can be obtained from the following equilibrium condi-
tion:

n—1 n—1
a(l —pu) = p Y kpe+np(l =Y pr),
k=1 k=0
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whereas we have

n—1 n—1
pu=1—(np)™ "> kpr—p (1= pr), (19)
k=1 k=0

where probabilities p; are determined by (17). The results for analyzed sys-
tem were presented, for example, in [6].

2. M/M/n/(m,V) queueing system with non-identical
servers and the random choice of a server

In this section we present some generalization of the system discussed in
section 1. The purpose of our investigations is to obtain formulas for probabil-
ities pr and loss probabilities in the steady state and to analyze some special
cases. We use some classical results for M/M/n/m queuing systems with
non-identical servers [1-5, 8] and some basic properties of queueing systems
with non-homogeneous customers and customer’s service time independent on
its volume [6, 7].

If the parameters of service time distribution are not identical for every
server, then the behaviour of the system is described by the following marko-
vian process:

(n(t),i1(t),i2(t), - -, (t), o1(8), o2 (L), .., oy(e) (1) (20)

where [ = min(n(t),n) and i1 (¢),i2(t), ..., 4(t) is the sequence of the numbers
of busy servers ordered increasingly. If n(t) = 0, the process (20) reduces to
n(t).

Process (20) is characterized by the following functions:

Py(t) = P{n(t) =0} (21)
Grfifo..s,(t,x) = P{n(t) =k, i1(t) = f1,i2(t) = fo, ..., 0(t) = fi,0(t) < z},
kE=1,n+m. (22)

It is obvious that for £ > n function (22) can be rewritten as

Gi(t,z) = P{n(t) = k,o(t) < x}.

If k < n, we have

Gk‘(tvx) = P{n(t) = k?‘f(t) < x} = Z ka1f2~~~fk (t7x)7 (23)
{F}
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where {F]'} is the set of all k-element combinations of the set { fi, fa,..., fu}.
Assume additionally that we have only two non-identical servers. Denote
as fi1, (ko time service parameters for first and the second server consequently.
Let us introduce the notation p = i
In this case the process (20) take the form

(W(t), i1 (t)’ s ail(t)’ 01 (t)a 02 (t)’ < Op(t) (t)) ) (24)

where | = min(n(t),2).
Process (24) can be characterized by the following functions:

By(t) = P{n(t) = 0}; (25)

Pu(t) = P{n(t) = 1,i1(t) = 1} (26)
Ppo(t) = P{n(t) = 1,i1(t) = 2}; (27)
Py(t) = P{n(t) = k},k =2,m +2; (28)
(29)

(30)

(31)

26
27
Gu(t,x) = P{n(t) = 1,i1(t) = 1,0(t) <z} 29
Ga(t,x) = P{n(t) = 1,i1(t) = 2,0(t) <z}
Gi(t,x) = P{n(t) = k,o(t) <z}, k=2,m + 2.

30
31

If we analyze the behaviour of the system, we can write down the following
equations:

Py(t) = —aPoy(t)L(V) + paPra(t) + paPra(t); (32)

\%
P = =a [ Gu(t.V =a)dL(w) = Pu(0)+ §ROLV)+ pPa)s (39)
\%
Pha(t) == [ GualtV—a)dLia) = paPra(®)+ § Ru(OLV) 4 Pat)s (34
14
Py(t) = —a / Ga(t,V — 2)dL(x) — (1 + 12) Pa(t) +

ta ( / Gu(t,V — 2)dL(z / Gra(t,V — 2)dL(z )) (111 + p2) P3(8);
(35)

174
Pi(t) = —a /O Gty V — @)dL(x) — (1 + i2) Pu(t)+

\%4
+a/ Gr-1(t,V —x)dL(z) + (p1 + p2)Pry1(t), k=3,m+1; (36)
0
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\%
Py yo(t) = —(p1 + p2) Prya(t) + a/o Gmy1(t,V — z)dL(x); (37)
m+2
Po(t) + Pri(t) + Pra(t) + Z Py(t (38)

In the steady state (if only p < 00), we obtain the following equations for
functions po, p11, P12, Pk, 911(2), g12(), gr(x), that are the limits of functions
(25)—(31) (if t — o0) in the sens of weak convergence:

0= —apoL(V) 4+ pip11 + popi2; (39)
v a
a/ g11(V —x)dL(x) — pip11 + 5POL(V) + Lop2; (40)
0
v a
a/ g12(V — x)dL(x) — pap12 + §pOL(V) + p1p2; (41)
0

0=—a / 02(V — 2)dL(z) — (1 + pa)pa+
0
1% 1%
ta ( [ anv =z + [ o - as)dL(w)) e (42)

v
0= —a/ gk(V — 2)dL(z) — (p1 + po)pe+
0

v
+a/ gk—1(V —z)dL(z) + (p1 + p2)pe+1, k=3,m+1; (43)
0
v
0=—(pu1 + p2)pm2 + a/ gm+1(V — x)dL(x); (44)
0
m+2
po+pitpat Y pr=1 (45)
k=2

By the direct substitution, we can check that the solution of (39)-(45) has
the form

a a
= L oL = % poL(x); 4
g11(z) 2P (z), gi2(x) 2" (z); (46)
apo 1 1 k—1 R
ge(x) = — | —+— ) p" Li(x), k=2,m+2; (47)
2 \p1 e
= L poL(V), pro = ——poL(V); (48)
P11 = 2/“190 , P12 = 2M2p0 ;
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apo, 1 1
= pi 412 = 22— 4 )L(V); 19
P1 = P11 T P12 5 (,ul ,U2) (V) (49)
a 1 1 -
pr =20 (— + —) PV, k=2 m T 2. (50)
2 \m e
The formulas (49)—(50) can be rewritten as it follows:
_apy (1 1 k—1 —
pp=——|—+—)p" " Lg(V), k=1,m+2, (51)
2\ p2

where pg can be obtained from the normalization condition (45) and has the

form
m—+2
1+ — k— 1Lk
(Nl M2> Z P

The above analysis can be generahzed for the arbitrary number of non-
identical servers
For example, in the case of n = 3 we obtain

-1

po = (52)

apo apo apo
pi1=—L(V), pra = —L(V), pig=—L(V); 53
=3 V), p12 32 V), p13 33 (V) (53)
a 1 1 1
P1 = p11 +pi2 +pi13 = go <— +—+ —> L(V); (54)
K1 K2 U3
= P L0, pars = ALy (V), ps = P L) (55)
b212 = 671122 2 , D213 = Bu1is3 2 , D223 = Bluzisz 2 ;
a? 1 1 1
D2 = p212 + p213 + P23 = égo ( + + > Ly(V); (56)
Hip2  p1p3 H2pH3
a® 1 1 1 .
pp = 2P0 < + + ) PPV, k=3,m + 3, (57)
6 Hip2  pap3 H2p3
where p = ——=——. Formulas (56)—(57) can be rewritten as
a® 1 1 1 .
pe = 220 < + + ) pPLL(V), k=2m+3. (58)
6 Mip2  pAp3 M3

where we obtain the following value for pg:

11 1
po = [1+g <—+—+—>L(V)+
3\ p2 o s

-1

(59)

a? [ 1 1 10\
+— ( + + > > P PLL(V)
6 \pipe  paps  pops)
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The solutions of analyzed systems of equations in the steady state are
obtained using computer algebra systems (ex. Mathematica environment).
In general case we obtain the following formulas:

a*(n — k)!po

! [Ty wy,

Prfifo..fo =

ak(n—k)! [
el e 2T Ly(V), k=1,n-2,

%
1} ]._[ac EF"’ Ha;

T €EFP Ha;
i pk_n+1Lk(V)? k=n—-1n+m, ( )

where F}' denotes k-element subset of n-element set and
1 n—2
m= 1+ L w0 Y BV
n: k=1 {Fn Hw,EF Ha;
n 1 n+tm

— > > T "L (V)| (62)

k1 (Fry LAaieFy y Has
3. Loss probability

Assume that we have a system with two non-identical servers. Denote as
11, po service time parameters for the first and second server consequently.
Denote as p, the loss probability for the system under consideration. To
obtain the value of p, we can write down the following equilibrium condition:

a(l —pu) = pap11 + poprz + (H1 + p2) (1 - Zpk) : (63)
In the case of three servers the equilibrium condition has the form

a(l —py) = pipi1 + popiz + pspiz + (1 + p2)p2iz+

+(p1 + p3)pais + (p2 + ps)p2es + (ua + p2 + p3) (1 - ZPk) . (64)

In general we have the following formula

a(l — pu) Z Z Pkfifz...fr Zufz +Zﬂk <1 a ZPk) (65)

k=1 {Fr}
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The solution of (65) leads to the following result:

1 n—1 b - S
=1 S pnn Y+ Y (1 - Zpk) ,  (66)
g prt k=0

k=1{F"}
where piy, 7,5, and py are determined by relations (60) and (61).
4. Analysis of some special cases
1. M/M/n/(0,V) queueing system with non-identical servers.

Consider now a queueing system with no waiting places in the queue (m =
0). In this case formula (61) has the form

F(n —k)! 1
pp = LT : )'no Li(V), k=T,n—1;
n: (Fr} H:vingL Ha;
a™ ! 1
pn = ——1F m La(V),
Ty M He
where
1= 1
Po = 1+mZak(n—k)! > i Li(V)+
T k=1 (Fpy HimiEly M,

n—1 1
+ =23 Ly(V)

|
"y Waery , Ha:

Loss probability on the base of the relation (66) has the form

1 n—1 k n
Pu=1-2 ZZpkflfQ...kaumeanMk
i=1 k=1

k=1{Fg}

Assume additionally that customer’s volume has an exponential distribu-
tion with the parameter f ie. L(z) = 1 — e~7?. In this case we have
Ly(z)=1—ef Zi:ol (flf)l i.e. the function Li(x) has the k—Erlang distri-
bution with the parameter f. So we finally obtain the formulas
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aF(n — k)!po P (fV) -
Phfifofo = | 1—¢€ fvz ] ,k=1,n—-1;

n! [Tizy K

a*(n — k)'po 1 <~ (V)
_ -fv — .
Dk = E 1—e E , , k=1,n—1,;

{FP}
n—1 ;
gy
s (1 e fVE%—v> S

Assume now that customers’s volume has geometric distribution with the
parameter f i.e. L(z) =Y ,_,(1 — f)f¥. Then we have

Ly(z) =) (’” - 1)#‘(1 - P~

i<T

pop
Pn — > H

{Fr 1} wiely

So we obtain the following results:

' k+Z . _
)!p i
pkflfQ---fk_ 02( )f(l_f)ka k=1,n-1;
Z ll’l/fz <V
a*(n—k)lp 1 E+i—-1\ -
pk:%zniz< i )f(l_f)k7k:17n_1§
i {Fpy HimEly Has i

Mfzﬁ;é@ﬁ ¥ TT_;L___§:<”+:‘1>fq1_fw; (68)

gy Haery o iy

Finally we assume that customer’s volume is constant i.e. { = fy. Then
we have L(x) = H(x — fy), where H(z) is the Heaviside unitstep function and

So we obtain the following results:

a®(n — k)'po 14 -
Phfiforf = ——5— H (— —fo) Jk=1,n-1;
ol ny \K

F(n —k)! 1 .
pk:a(n )poz H(%_f0>7k:17n_17

n! (Fr} H:vieF,? Ha;
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a" p 1 \%4
Pn = 7,0[) 7 H <— - fo) : (69)
oy Heerg e A

2. M/M/n/(c0,V) queueing system with non-identical servers.

Consider now queueing system with infinite number of waiting places
(m = 00). In this case formula (61) has the form

*(n—k)! 1 T, 9
@ (n—k)ipo Z{F,?} Moy Ly(V), k=1,n—2,
pk = an—l

n

!pO Z{Fﬁ,l} HwiEF;;—_l o pk—n-l—lLk(V), k>n—1,

where

Po = 1+%Zak(n—k)!z 1

=Ly (V)+

-1
n—1 1
+ D a—; >

k—n+1
p Li(V)
k=n1 U (Fr ) HﬂﬁiEFZJ_l Mz,

In addition, loss probability is determined by (66).

Assume additionally that customer’s volume has exponential distribution
with the parameter f. Then we have the following formulas:

a®(n —k)!po 1 ( il
bk =

anflpopkfnJrl

k-1 i
, (e U s
" (i Haery o /

(70)
Assume now that customers’s volume has geometric distribution with the
parameter f. Then we have

Pk =

k(n — 1) — .
a®(n 'k‘).po 1 <k:+z 1>fl(1—f)k, F=Th=2
" {Fr} Heiery o i<V !

Pk

11
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am k—n—+1 1

pp = Lo > (k“”)fi(l—f)’i k>n-l.

|
" {Fr_i} H”CiEFﬁfl Hai i 2y ¢
(71)
If the customer’s volume is constant (¢ = fy), then we obtain the following
results:

F(n —k)! 1 -
pk:a(n )poz H<K_f0>7k:17n_27

n Gy Haerp e K

n—1 k—n—+1 1
S U — 7H<Z—f0>,k2n—1 (72)
| M k

|
"y eer

Pr =
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